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Abstract

This paper investigates the dynamic behaviour of a piezoelectric laminate containing multiple interfacial collinear

cracks subjected to steady-state electro-mechanical loads. Both the permeable and impermeable boundary conditions

are examined and discussed. Based on the use of integral transform techniques, the problem is reduced to a set of

singular integral equations, which can be solved using Chebyshev polynomial expansions. Numerical results are pro-

vided to show the effect of the geometry of interacting collinear cracks, the applied electric fields, the electric boundary

conditions along the crack faces and the loading frequency on the resulting dynamic stress intensity and electric dis-

placement intensity factors. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

With the increasing usage of piezoelectric materials and composites as actuating and sensing devices in
smart structures, where dynamic loading is dominant, much attention has been paid to their dynamic
fracture behaviour. Shindo and Ozawa (1990) first investigated the steady state dynamic response of
cracked piezoelectric materials under the action of incident plane harmonic waves. The dynamic Green’s
functions for anisotropic piezoelectric materials were derived by Norris (1994). Khutoryyansky and Sosa
(1995) proposed dynamic representation formulas and fundamental solutions for piezoelectricity. Li and
Mataga (1996a, 1996b) studied the problem of a semi-infinite crack propagating in an infinite piezoelectric
medium. They investigated the effect of the propagating velocity of the crack on the crack tip fields. Narita
and Shindo (1999) investigated the scattering of anti-plane shear waves by a finite crack in piezoelectric
laminates. By the use of integral transforms and Copson–Sih’s method, Chen and Karihaloo (1999) in-
vestigated the transient response of a finite crack in an infinite piezoelectric medium under the action of
anti-plane mechanical loads and in-plane electric displacements. Meguid and Chen (2001), Wang and Yu
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(2000), and Shin et al. (2001) considered the dynamic crack problem in a piezoelectric strip under electro-
mechanical impact. Meguid and Wang (1998) and Wang and Meguid (2000) studied the dynamic anti-plane
interaction of cracks in a piezoelectric medium under incident shear wave loading.

Most piezoelectric devices in smart structures are surface-mounted, and debonding may take place along
the interfaces between those devices and the host structures. It is, therefore, of great importance to in-
vestigate the effect of debonding on the coupled electro-mechanical behaviour of an integrated structure. Li
et al. (2000) considered a moving crack at the interface between two dissimilar piezoelectric materials.
Based on the use of the impermeable crack condition, Wang et al. (2000) analyzed a cracked piezoelectric
laminate subjected to electro-mechanical impact loads. With a pseudo-incident wave method, Wang (2001)
discussed the scattering of multiple interfacial cracks between two infinite piezoelectric mediums. In his
study, the cracks were assumed to be permeable.

In this paper, we consider the dynamic behaviour of a piezoelectric laminate containing multiple in-
terfacial collinear cracks subjected to steady-state electro-mechanical loads. Both the permeable and im-
permeable boundary conditions are considered and discussed. Based on the use of integral transform
techniques, the problem is reduced to a set of singular integral equations, which can be solved using
Chebyshev polynomial expansions. Numerical results are provided to show the effect of the geometry of
interacting cracks, the applied electric fields, the electric boundary conditions along the crack faces and the
loading frequency on the resulting dynamic stress intensity factor and electric displacement intensity factor.

2. Formulation of the problem

Consider the problem of a piezoelectric laminate containing n interfacial collinear cracks, as shown in
Fig. 1. A set of Cartesian coordinates (x; y; z) is chosen such that the x-axis is directed along the crack line
and y-axis is perpendicular to it. The poled piezoelectric strip, with the z-axis being the poling direction,
occupies the region (�h < y < 0, �1 < x < þ1). It is assumed that the laminate is subjected to a uniform
shear stress s0 expð�ixtÞ at y ¼ �h, h1 and �1 < x < þ1. Furthermore, a uniform in-plane electric
displacement D0 expð�ixtÞ is prescribed on the lower surface of the piezoelectric strip, resulting in a steady
and coupled electric and stress wave field.

For the sake of convenience, the exponential harmonic factor expð�ixtÞ will be suppressed and only the
amplitude of different field variables will be considered. In this configuration, the piezoelectric boundary
value problem is simplified considerably because only the out-of-plane displacement and the in-plane
electric fields exist. The constitutive relation for the piezoelectric material can be expressed as

Fig. 1. Geometric configuration of the problem.
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Dx ¼ e15
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oy

� j11

o/
oy

ð2Þ

where sxz and syz are the shear stress components, Dx and Dy are the electric displacements, w and / are the
mechanical displacement and electric potential, while c44, e15 and j11 are the elastic modulus, the piezo-
electric constant and the dielectric constant of the piezoelectric material, respectively.

The equilibrium equation and the Maxwell equation for the piezoelectric material under anti-plane
loading are given by

osxz

ox
þ osyz

oy
þ qx2w ¼ 0 ð3Þ

oDx

ox
þ oDy

oy
¼ 0 ð4Þ

where q is the density of the piezoelectric material.
Substituting Eqs. (1) and (2) into (3) and (4) results in the following governing equations:

r2w þ k20w ¼ 0; j11r2/ ¼ e15r2w ð5Þ
where k0 ¼ x=c2, with c2 ¼

ffiffiffiffiffiffiffiffi
l=q

p
and l ¼ c44 þ e215=j11.

The constitutive relation for the elastic material can be written as

sxz1 ¼ c441
ow1

ox
; syz1 ¼ c441

ow1

oy
ð6Þ

where sxz1 and syz1 are the shear stress components, w1 and c441 are the displacement and the elastic
modulus, respectively. The governing equation is given by

r2w1 þ k21w1 ¼ 0 ð7Þ
in which k1 ¼ x=c21, with c21 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c441=q1

p
and q1 is the density of the elastic material.

In the framework of linear theory, the present problem can be treated as the superposition of two sub-
problems. Sub-problem (a) considers a crack-free piezoelectric laminate under the action of electro-
mechanical loads on both surfaces. While sub-problem (b) concerns a piezoelectric laminate of multiple
interfacial cracks, with the crack faces subjected to the electro-mechanical loads that cancel out the stress
and the electric displacement induced by sub-problem (a).

Sub-problem (a) can be easily solved and therefore the detailed calculation is omitted. The stress and the
electric displacement along the interface are found to be

�ssyzðx; 0Þ ¼
s0 lk0 sinðk0hÞ þ c441k1 sinðk1h1Þ½ 	 þ e15c441k1D0 sinðk1h1Þ 1� cosðk0hÞ½ 	=k11

lk0 cosðk1h1Þ sinðk0hÞ þ c441k1 sinðk1h1Þ cosðk0hÞ
ð8Þ

Dyðx; 0Þ ¼ D0 ð9Þ
Next, we discuss sub-problem (b) in detail. With the help of Fourier transforms, the solution of the

governing equations (5) and (7) is given by

wðx; yÞ ¼ 1

2p

Z 1

�1
A1ðnÞ expð½ � cyÞ þ A2ðnÞ expðcyÞ	 expð�inxÞdn ð10Þ
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/ðx; yÞ ¼ e15
j11

wðx; yÞ þ wðx; yÞ ð11Þ

wðx; yÞ ¼ 1

2p

Z 1

�1
A3ðnÞ expð½ � nj jyÞ þ A4ðnÞ expð nj jyÞ	 expð�inxÞdn ð12Þ

w1ðx; yÞ ¼
1

2p

Z 1

�1
A5ðnÞ expð½ � c1yÞ þ A6ðnÞ expðc1yÞ	 expð�inxÞdn ð13Þ

where

c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � k20

q
nj jP k0

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 � n2

q
nj j < k0

8<
: ; c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 � k21

q
nj jP k1

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � n2

q
nj j < k1

8<
: ð14Þ

From (1), (2) and (6), the stresses and electric displacements are obtained as follows:

sxzðx; yÞ ¼ � li
2p

Z 1

�1
n A1ðnÞ expð½ � cyÞ þ A2ðnÞ expðcyÞ	 expð�inxÞdn

� e15i
2p

Z 1

�1
n A3ðnÞ expð½ � nj jyÞ þ A4ðnÞ expð nj jyÞ	 expð�inxÞdn ð15Þ

syzðx; yÞ ¼
l
2p

Z 1

�1
c½ � A1ðnÞ expð � cyÞ þ A2ðnÞ expðcyÞ	 expð�inxÞdn

þ e15
2p

Z 1

�1
nj j½ � A3ðnÞ expð � nj jyÞ þ A4ðnÞ expð nj jyÞ	 expð�inxÞdn ð16Þ

Dxðx; yÞ ¼
j11i

2p

Z 1

�1
n A3ðnÞ expð½ � nj jyÞ þ A4ðnÞ expð nj jyÞ	 expð�inxÞdn ð17Þ

Dyðx; yÞ ¼ � j11

2p

Z 1

�1
nj j½ � A3ðnÞ expð � nj jyÞ þ A4ðnÞ expð nj jyÞ	 expð�inxÞdn ð18Þ

sxz1ðx; yÞ ¼ � c441i
2p

Z 1

�1
n A5ðnÞ expð½ � c1yÞ þ A6ðnÞ expðc1yÞ	 expð�inxÞdn ð19Þ

syz1ðx; yÞ ¼
c441
2p

Z 1

�1
c1½ � A5ðnÞ expð � c1yÞ þ A6ðnÞ expðc1yÞ	 expð�inxÞdn ð20Þ

In the above expressions, AjðnÞ (j ¼ 1–6) are unknown functions, which will be determined from
boundary conditions.

In the theoretical studies of crack problems, the modelling of the electric boundary conditions along the
crack faces is still an open problem. Generally, there are two well-accepted electric boundary conditions;
namely: the permeable and impermeable boundary conditions. From the physical viewpoint, those two
electric boundary conditions are the two extreme cases, with the permeable boundary condition repre-
senting the case where the crack faces are in complete contact and the impermeable boundary condition
representing the case where the crack is open and filled with vacuum. For the present case, those two
electric boundary conditions are examined and the corresponding discussions are presented in Sections 3
and 4, respectively.
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3. Solution of the permeable crack problem

In this section, we consider the permeable crack problem. It is assumed that the surface of the elas-
tic material is grounded, so that the boundary conditions for the permeable crack problem can be written
as

syz1ðx; h1Þ ¼ 0; �1 < x < 1 ð21aÞ

syz1ðx; 0Þ ¼ syzðx; 0Þ; �1 < x < 1 ð21bÞ

/ðx; 0Þ ¼ 0; �1 < x < 1 ð21cÞ

syz1ðx; 0Þ ¼ ��ssyzðx; 0Þ; x 2 ðap; bpÞ; p ¼ 1; 2; . . . ; n ð21dÞ

wðx; 0Þ ¼ w1ðx; 0Þ; x 62 ðap; bpÞ ð21eÞ

syzðx;�hÞ ¼ 0; �1 < x < 1 ð21fÞ

Dyðx;�hÞ ¼ 0; �1 < x < 1 ð21gÞ
Substituting (10)–(13), (16), (18) and (20) into (21a)–(21c) and (21f) and (21g), we find

A2ðnÞ ¼ expð2chÞA1ðnÞ ð22Þ

A3ðnÞ ¼ � e15 1þ expð2chÞ½ 	
j11 1þ expð2 nj jhÞ½ 	A1ðnÞ ð23Þ

A4ðnÞ ¼ � e15 1þ expð2chÞ½ 	
j11 1þ expð2 nj jhÞ½ 	 expð2 nj jhÞA1ðnÞ ð24Þ

A5ðnÞ ¼ expð2c1h1ÞA6ðnÞ ð25Þ

A6ðnÞ ¼
lc expð2chÞ � 1½ 	 1þ expð2 nj jhÞ½ 	 þ e215=j11 nj j 1þ expð2chÞ½ 	 1� expð2 nj jhÞ½ 	

c441c1 1þ expð2 nj jhÞ½ 	 1� expð2c1h1Þ½ 	 A1ðnÞ ð26Þ

Denote that

DwðxÞ ¼ w1ðx; 0Þ � wðx; 0Þ ð27Þ
then, we have

DwðxÞ ¼ 0 x 62 ðak; bkÞ;
DwkðxÞ x 2 ðak; bkÞ;

�
k ¼ 1; 2; . . . ; n ð28Þ

To reduce the mixed boundary conditions (21d) and (21e) into an integral equation, we now introduce
the following dislocation function

uðxÞ ¼ dðDwÞ
dx

¼ 0 x 62 ðak; bkÞ
ukðxÞ x 2 ðak; bkÞ

�
ð29Þ

where ukðxÞ ¼ dðDwkÞ=dx. Then, from (21e) we haveZ bp

ap

upðxÞdx ¼ 0; p ¼ 1; 2; . . . ; n ð30Þ

X. Zhao, S.A. Meguid / International Journal of Solids and Structures 39 (2002) 2477–2494 2481



Substitution of (10) and (13) into (29) yields

uðxÞ ¼ � 1

2p

Z 1

�1
in A5ðnÞ½ þ A6ðnÞ � A1ðnÞ � A2ðnÞ	 expð�inxÞdn ð31Þ

From the above equation and the definition of Fourier transform, we obtain

A5ðnÞ þ A6ðnÞ � A1ðnÞ � A2ðnÞ ¼ � 1

in

Xn

k¼1

Z bk

ak

ukðaÞ expðinaÞda ð32Þ

Further, from (22)–(26) and (32), we have

A1ðnÞ ¼ � c441c1 1þ expð2 nj jhÞ½ 	 1� expð2c1h1Þ½ 	
inF1ðnÞ

Xn

k¼1

Z bk

ak

ukðaÞ expðinaÞda ð33Þ

where

F1ðnÞ ¼
e215
j11

nj j 1½ þ expð2chÞ	 1½ � expð2 nj jhÞ	 1½ þ expð2c1h1Þ	 þ 1½ þ expð2 nj jhÞ	


 lc 1½f þ expð2c1h1Þ	 expð2chÞ½ � 1	 � c441c1 1½ � expð2c1h1Þ	 1½ þ expð2chÞ	g ð34Þ

By using Eq. (21d), it is shown thatZ 1

�1

c1F2ðnÞ expð�inxÞ
inF1ðnÞ

Xn

k¼1

Z bk

ak

ukðaÞ expðinaÞdadn ¼ 2p
c441

�ssyzðx; 0Þ;

x 2 ðap; bpÞ; p ¼ 1; 2; . . . ; n ð35Þ

where

F2ðnÞ ¼ 1½ � expð2c1h1Þ	 lc 1½



þ expð2 nj jhÞ	 expð2chÞ½ � 1	 þ e215=j11 nj j 1½ � expð2 nj jhÞ	 1½ þ expð2chÞ	
�

ð36Þ

After performing the appropriate asymptotic analysis, the following result can be obtained:

lim
nj j!1

c1F2ðnÞ
nF1ðnÞ

¼ � c44
c44 þ c441

signðnÞ ð37Þ

By making use of Eq. (37) and defining that

a ¼ bk � ak

2
g þ bk þ ak

2
¼ ekg þ dk ð38Þ

x ¼ bp � ap

2
u þ bp þ ap

2
¼ epu þ dp ð39Þ

Eq. (35) becomesZ 1

�1

upðgÞ
g � u

dg þ
Xn

k¼1

Z 1

�1

Qpkðg; uÞukðgÞdg ¼ � pðc44 þ c441Þ
c44c441

�ssyzðu; 0Þ; uj j < 1; p ¼ 1; 2; . . . ; n ð40Þ

where

Qpkðg; uÞ ¼
ek

ekg � epu þ ðdk � dpÞ
� dpk

g � u
�
Z 1

0

ek
ðc44 þ c441Þc1F2ðnÞ

c44nF1ðnÞ

�
þ 1




 sin nðekg

�
þ dkÞ � nðepu þ dpÞ

�
dn ð41Þ
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Eq. (30) can be written asZ 1

�1

upðgÞdg ¼ 0; p ¼ 1; 2; . . . ; n ð42Þ

Eq. (40) is a singular integral equation of the first kind, its solution includes the well-known square-root
singularity and can be expressed as

ukðgÞ ¼
X1
j¼0

Bkjffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p TjðgÞ ð43Þ

where TjðgÞ are Chebyshev polynomials of the first kind and Bkj are unknown constants. From the or-
thogonality conditions of Chebyshev polynomials, Eq. (42) leads to Bk0 ¼ 0. Substituting Eq. (43) into (40),
the following algebraic equation for Bkj is obtained:X1

j¼1

BpjUj�1ðuÞ þ
Xn

k¼1

X1
j¼1

BkjLpkjðuÞ ¼ � c44 þ c441
c44c441

�ssyzðu; 0Þ; uj j < 1 p ¼ 1; 2; . . . ; n ð44Þ

where UjðuÞ represent Chebyshev polynomials of the second kind, and

LpkjðuÞ ¼
Z 1

�1

TjðgÞ
p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p Qpkðg; uÞdg ð45Þ

Truncating the Chebyshev polynomials in Eq. (44) to the Nth term and assuming that Eq. (44) is satisfied
at N collocation points along the crack faces,

um ¼ cos
mp

N þ 1

� �
; m ¼ 1; 2; . . . ;N ð46Þ

Eq. (44) can be reduced to a linear algebraic system of equations of the following form:

XN
j¼1

Bpj sin
mjp

N þ 1

� ��
sin

mp
N þ 1

� �
þ
Xn

k¼1

XN
j¼1

BkjLpkjðumÞ ¼ � c44 þ c441
c44c441

�ssyzðum; 0Þ;

m ¼ 1; 2; . . . ;N and p ¼ 1; 2; . . . ; n ð47Þ

Once Bkj are determined from (47), the stress components can be obtained. Then, the dynamic stress
intensity factors of crack p can be evaluated using the following expressions:

KR
III ¼ lim

x!bþp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx � bpÞ

q
syzðx; 0Þ ¼ � c44c441

c44 þ c441

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbp � apÞ

2

r X1
j¼1

Bpj ð48Þ

KL
III ¼ lim

x!a�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðap � xÞ

q
syzðx; 0Þ ¼

c44c441
c44 þ c441

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbp � apÞ

2

r X1
j¼1

ð�1ÞjBpj ð49Þ

4. Solution of the impermeable crack problem

Consider now the impermeable crack problem. The boundary conditions for the problem can be ex-
pressed as

syz1ðx; h1Þ ¼ 0; �1 < x < 1 ð50aÞ
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syz1ðx; 0Þ ¼ syzðx; 0Þ; �1 < x < 1 ð50bÞ

syzðx; 0Þ ¼ ��ssyzðx; 0Þ; x 2 ðap; bpÞ ð50cÞ

wðx; 0Þ ¼ w1ðx; 0Þ; x 62 ðap; bpÞ ð50dÞ

Dyðx; 0Þ ¼ �D0; x 2 ðap; bpÞ ð50eÞ

/ðx; 0Þ ¼ 0; x 62 ðap; bpÞ ð50fÞ

syzðx;�hÞ ¼ 0; �1 < x < 1 ð50gÞ

Dyðx;�hÞ ¼ 0; �1 < x < 1 ð50hÞ
From (50a), (50b), (50g) and (50h), it can be seen that

A2ðnÞ ¼ A1ðnÞ expð2chÞ ð51Þ

A4ðnÞ ¼ A3ðnÞ expð2 nj jhÞ ð52Þ

A5ðnÞ ¼
lc expð2chÞ � 1½ 	 expð2c1h1Þ

c441c1 1� expð2c1h1Þ½ 	 A1ðnÞ þ
e15 nj j expð2 nj jhÞ � 1½ 	 expð2c1h1Þ

c441c1 1� expð2c1h1Þ½ 	 A3ðnÞ ð53Þ

A6ðnÞ ¼
lc expð2chÞ � 1½ 	

c441c1 1� expð2c1h1Þ½ 	A1ðnÞ þ
e15 nj j expð2 nj jhÞ � 1½ 	
c441c1 1� expð2c1h1Þ½ 	A3ðnÞ ð54Þ

Let us again introduce the following dislocation function:

u1ðxÞ ¼
d

dx
w1ðx; 0Þ½ � wðx; 0Þ	 ð55Þ

and the following definition:

u2ðxÞ ¼ � d/ðx; 0Þ
dx

ð56Þ

According to Eqs. (50d) and (50f), those two functions can be written as

u1ðxÞ ¼
0 x 62 ðak; bkÞ

u1kðxÞ x 2 ðak; bkÞ

�
ð57Þ

u2ðxÞ ¼
0 x 62 ðak; bkÞ

u2kðxÞ x 2 ðak; bkÞ

�
ð58Þ

where u1kðxÞ ¼ dðDwkÞ=dx, u2kðxÞ ¼ �d/kðxÞ=dx, and they must satisfyZ bp

ap

u1pðxÞdx ¼ 0; p ¼ 1; 2; . . . ; n ð59Þ

Z bp

ap

u2pðxÞdx ¼ 0; p ¼ 1; 2; . . . ; n ð60Þ
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By using Eqs. (55), (56), (10)–(13), and the definition of Fourier transform, we obtain

1½ þ expð2c1h1Þ	A6ðnÞ � 1½ þ expð2chÞ	A1ðnÞ ¼ � 1

in

Xn

k¼1

Z bk

ak

u1kðaÞ expðinaÞda ð61Þ

e15
j11

1½ þ expð2chÞ	A1ðnÞ þ 1½ þ expð2 nj jhÞ	A3ðnÞ ¼
1

in

Xn

k¼1

Z bk

ak

u2kðaÞ expðinaÞda ð62Þ

Substitution of (51)–(54) into (61) and (62) yields

A1ðnÞ ¼ � c441c1 1þ expð2 nj jhÞ½ 	 1� expð2c1h1Þ½ 	
inF1ðnÞ

Xn

k¼1

Z bk

ak

u1kðaÞ expðinaÞda

� e15 nj j expð2 nj jhÞ � 1½ 	 1þ expð2c1h1Þ½ 	
inF1ðnÞ

Xn

k¼1

Z bk

ak

u2kðaÞ expðinaÞda ð63Þ

A3ðnÞ ¼
c441e15c1 1þ expð2chÞ½ 	 1� expð2c1h1Þ½ 	

ij11nF1ðnÞ
Xn

k¼1

Z bk

ak

u1kðaÞ expðinaÞda

þ 1

inF1ðnÞ
lc expð2chÞ½f � 1	 1½ þ expð2c1h1Þ	 � c441c1 1½ þ expð2chÞ	 1½ � expð2c1h1Þ	g



Xn

k¼1

Z bk

ak

u2kðaÞ expðinaÞda ð64Þ

From (50c) and (50e), we haveZ 1

�1
c expð2chÞ½ � 1	A1ðnÞ expð�inxÞdn ¼ � 2p

l
�ssyzðx; 0Þ
�

þ e15
k11

D0



; x 2 ðap; bpÞ ð65Þ

Z 1

�1
nj j expð2 nj jhÞ½ � 1	A3ðnÞ expð�inxÞdn ¼ 2p

k11
D0; x 2 ðap; bpÞ ð66Þ

By substituting Eqs. (63) and (64) into (65) and (66), we obtain

1

i

Z 1

�1
a11ðnÞ expð�inxÞ

Xn

k¼1

Z bk

ak

u1kðaÞ expðinaÞdadn þ 1

i

Z 1

�1
a12ðnÞ expð�inxÞ



Xn

k¼1

Z bk

ak

u2kðaÞ expðinaÞdadn ¼ 2p
l

�ssyzðx; 0Þ
�

þ e15
k11

D0



; x 2 ðap; bpÞ ð67Þ

1

i

Z 1

�1
a21ðnÞ expð�inxÞ

Xn

k¼1

Z bk

ak

u1kðaÞ expðinaÞ	dadn þ 1

i

Z 1

�1
a22ðnÞ expð�inxÞ



Xn

k¼1

Z bk

ak

u2kðaÞ expðinaÞdadn ¼ 2p
k11

D0; x 2 ðap; bpÞ ð68Þ

where

a11ðnÞ ¼
c441cc1 1þ expð2 nj jhÞ½ 	 expð2chÞ � 1½ 	 1� expð2c1h1Þ½ 	

nF1ðnÞ
ð69Þ
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a12ðnÞ ¼
e15 nj jc expð2 nj jhÞ � 1½ 	 expð2chÞ � 1½ 	 1þ expð2c1h1Þ½ 	

nF1ðnÞ
ð70Þ

a21ðnÞ ¼
e15c441 nj jc1 expð2 nj jhÞ � 1½ 	 expð2chÞ þ 1½ 	 1� expð2c1h1Þ½ 	

j11nF1ðnÞ
ð71Þ

a22ðnÞ ¼
nj j expð2 nj jhÞ � 1½ 	

nF1ðnÞ
lc expð2chÞ � 1½ 	 1þ expð2c1h1Þ½ 	 � c441c1 1þ expð2chÞ½ 	 1� expð2c1h1Þ½ 	f g

ð72Þ
Performing appropriate asymptotic analysis leads to

lim
nj j!1

a11ðnÞ ¼ � c441
c44 þ c441

signðnÞ ð73Þ

lim
nj j!1

a12ðnÞ ¼
e15

c44 þ c441
signðnÞ ð74Þ

lim
nj j!1

a21ðnÞ ¼ � e15c441
j11 c44 þ c441ð Þ signðnÞ ð75Þ

lim
nj j!1

a22ðnÞ ¼ 1

�
þ e215

j11 c44 þ c441ð Þ



signðnÞ ð76Þ

By the use of (38) and (39), and from (67) and (68) and (73)–(76), we have the following singular integral
equations:Z 1

�1

u1pðgÞ
g � u

dg � e15
c441

Z 1

�1

u2pðgÞ
g � u

dg þ
Xn

k¼1

Z 1

�1

Q11pkðg; uÞu1kðgÞdg �
Xn

k¼1

Z 1

�1

Q12pkðg; uÞu2kðgÞdg

¼ � pðc44 þ c441Þ
lc441

�ssyzðu; 0Þ
�

þ e15
k11

D0



; uj j < 1 ð77Þ

�
Z 1

�1

u1pðgÞ
g � u

dg þ k11ðl þ c441Þ
e15c441

Z 1

�1

u2pðgÞ
g � u

dg þ
Xn

k¼1

Z 1

�1

Q21pkðg; uÞu1kðgÞdg

þ
Xn

k¼1

Z 1

�1

Q22pkðg; uÞu2kðgÞdg ¼ pðc44 þ c441Þ
e15c441

D0; uj j < 1 ð78Þ

where

Q11pkðg; uÞ ¼
ek

ekg � epu þ ðdk � dpÞ
� dpk

g � u
�
Z 1

0

ek
c44 þ c441

c441
a11ðnÞ

�
þ 1




 sin nðekg

�
þ dkÞ � nðepu þ dpÞ

�
dn ð79Þ

Q12pkðg; uÞ ¼
e15
c441

ek

ekg � epu þ ðdk � dpÞ

�
� dpk

g � u



þ
Z 1

0

ek
c44 þ c441

c441
a12ðnÞ

�
� e15

c441




 sin nðekg

�
þ dkÞ � nðepu þ dpÞ

�
dn ð80Þ
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Q21pkðg; uÞ ¼ � ek

ekg � epu þ ðdk � dpÞ
þ dpk

g � u
þ
Z 1

0

ek
k11ðc44 þ c441Þ

e15c441
a21ðnÞ

�
þ 1




 sin nðekg

�
þ dkÞ � nðepu þ dpÞ

�
dn ð81Þ

Q22pkðg; uÞ ¼
k11ðl þ c441Þ

e15c441

ek

ekg � epu þ ðdk � dpÞ

�
� dpk

g � u




þ
Z 1

0

ek
k11ðc44 þ c441Þ

e15c441
a22ðnÞ

�
� k11ðl þ c441Þ

e15c441



sin nðekg
�

þ dkÞ � nðepu þ dpÞ
�
dn ð82Þ

We also haveZ 1

�1

ulpðgÞdg ¼ 0;

Z 1

�1

u2pðgÞdg ¼ 0; p ¼ 1; 2; . . . ; n ð83Þ

In a similar fashion to Section 3, the functions u1kðgÞ and u2kðgÞ are defined in terms of the Chebyshev
polynomials:

u1kðgÞ ¼
X1
j¼0

Bkjffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p TjðgÞ; u2kðgÞ ¼
X1
j¼0

Ekjffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p TjðgÞ ð84Þ

From (83), it follows that Bk0 ¼ Ek0 ¼ 0. By truncating the series to a reasonable number of terms and by
using a simple collocation technique, we can determine the remaining unknowns using the following
algebraic equations:

XN
j¼1

sin mjp
Nþ1

� �
sin mp

Nþ1

� �
2
4

3
5Bpj �

e15
c441

XN
j¼1

sin mjp
Nþ1

� �
sin mp

Nþ1

� �
2
4

3
5Epj þ

Xn

k¼1

XN
j¼1

L11pkjðumÞBkj �
Xn

k¼1

XN
j¼1

L12pkjðumÞEkj

¼ � c44 þ c441
lc441

�ssyzðum; 0Þ
�

þ e15
k11

D0



ð85Þ

�
XN
j¼1

sin mjp
Nþ1

� �
sin mp

Nþ1

� �
2
4

3
5Bpj þ

k11ðl þ c441Þ
e15c441

XN
j¼1

sin mjp
Nþ1

� �
sin mp

Nþ1

� �
2
4

3
5Epj þ

Xn

k¼1

XN
j¼1

L21pkjðumÞBkj

þ
Xn

k¼1

XN
j¼1

L22pkjðumÞEkj ¼
c44 þ c441
e15c441

D0; p ¼ 1; 2; . . . ; n and m ¼ 1; 2; . . . ;N ð86Þ

where

LrspkjðumÞ ¼
Z 1

�1

1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� g2

p Qrspkðg; umÞTjðgÞdg; r; s ¼ 1; 2 ð87Þ

Based on the solutions of (85) and (86), the dynamic stress intensity factors and electric displacement
intensity factors of crack p can be obtained, as follows:

KR
III ¼ lim

x!bþp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx � bpÞ

q
syzðx; 0Þ ¼

l
c44 þ c441

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbp � apÞ

2

r  
� c441

X1
j¼1

Bpj þ e15
X1
j¼1

Epj

!
� e15

j11

KR
D ð88Þ
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KR
D ¼ lim

x!bþp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðx � bpÞ

q
Dyðx; 0Þ

¼ 1

c44 þ c441

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbp � apÞ

2

r "
� e15c441

X1
j¼1

Bpj þ k11ðl þ c441Þ
X1
j¼1

Epj

#
ð89Þ

KL
III ¼ lim

x!a�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðap � xÞ

q
syzðx; 0Þ

¼ l
c44 þ c441

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbp � apÞ

2

r
c441

X1
j¼1

ð
"

� 1ÞjBpj � e15
X1
j¼1

ð � 1ÞjEpj

#
� e15

j11

KL
D ð90Þ

KL
D ¼ lim

x!a�p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðap � xÞ

q
Dyðx; 0Þ

¼ 1

c44 þ c441

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðbp � apÞ

2

r
e15c441

X1
j¼1

ð
"

� 1ÞjBpj � k11ðl þ c441Þ
X1
j¼1

ð � 1ÞjEpj

#
ð91Þ

5. Numerical results and discussions

Numerical calculations have been carried out to show the influence of the pertinent parameters. In the
following examples, the piezoelectric material is assumed to be PZT-4, and the elastic material is assumed to
be aluminium. The elastic, piezoelectric and dielectric properties of the materials are as follows (Narita and
Shindo, 1999):

c44 ¼ 2:56
 1010 N=m2; e15 ¼ 12:7 C=m2; j11 ¼ 64:6
 10�10 C=vm; q ¼ 7500 kg=m3;

c441 ¼ 2:65
 1010 N=m2; q1 ¼ 2706 kg=m3:

To check the convergence of the expansions in (43) and (84), a number of runs with varying number of
terms were used. We found that good convergence (2% difference between two successive runs) can be
reached when the number exceeds 15 terms. In all our calculations, we used twenty terms.

5.1. The single crack solution

Let us now restrict our attention to the single crack solution. It is assumed that a1 ¼ �a and b1 ¼ a.
Numerical results are shown in Figs. 2–11. In these figures, normalized parameters are used with
SIF ¼ KIII=ðs0

ffiffiffiffiffiffi
pa

p Þ, EDIF ¼ KD=ðD0

ffiffiffiffiffiffi
pa

p Þ, and Dh ¼ e15D0=ðj11s0Þ.
Figs. 2–4 show the results of the permeable crack problem. Specifically, Fig. 2 displays the variation of

the SIF with k0h for various h1=h at a=h ¼ 0:6 and Dh ¼ 0. In the case of h1 ¼ h, it is seen that for lower
frequencies, the dynamic SIF increases gradually with increasing k0h. When the frequency k0h approaches
1.2, an intense vibration takes place, which is reflected in the fact that the SIF changes sharply. This
phenomenon can also be observed for h1 ¼ 5h and h1 ¼ 10h.

Fig. 3 shows the influence of the applied electric fields on the dynamic stress intensity factor. It is seen
that when the frequency of the applied electro-mechanical loads is low (k0h < 1:2), the effect of electric fields
is negligible. However, when the frequency increases, the effect becomes obvious. It is also seen that both
the positive electric field (Dh ¼ 1:0) and the negative electric field (Dh ¼ �1:0) can induce the increase or
decrease of the dynamic stress intensity factor, depending on the value of k0h.
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The effects of crack geometry on the dynamic stress intensity factor are shown in Fig. 4. As can be seen
from the figure, the SIFs for the three cracks have almost the same value for lower frequencies. With the
increase in frequency, a significant difference is observed. In some specific ranges of frequencies, the SIF for
a=h ¼ 0:2 is much bigger than that for a=h ¼ 0:6 and 1.0. For example, when k0h ¼ 1:7, the SIFs for
a=h ¼ 0:2, 0.6 and 1.0 are 32.67, 5.13 and 1.63, respectively. The related KIII=ðs0

ffiffiffi
p

p
Þ are 14.60, 3.98 and

1.63, respectively. The inference of this is that small cracks are more likely to propagate and cause damage
to the structure than larger cracks in those ranges of frequencies.

The results of the impermeable crack problem are presented in Figs. 5,6 and 8. Generally, similar ob-
servations can be deduced from Figs. 5–7. However, the frequency of an intense vibration increases, as is
depicted in Figs. 5 and 6. In addition, the effect of the applied electric field on the dynamic SIF is more
pronounced. The effect of crack geometry on the dynamic SIF can be deduced from Fig. 7.

The variation of the electric displacement intensity factor with k0h for various a=h at h1 ¼ 10h and
Dh ¼ 1:0 is depicted in Fig. 8. From this figure, significant overshoot is observed in some specific ranges of

Fig. 2. Normalized SIF versus k0h for various h1=h assuming the permeable boundary condition.

Fig. 3. Normalized SIF versus k0h for various Dh assuming the permeable boundary condition.
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frequencies. This indicates that a strong local electric field is induced at the crack tip, which may further
lead to failure of the piezoelectric material.

Fig. 9 compares the solutions for the permeable and impermeable conditions. For lower frequencies, the
difference between the two solutions is negligible. However, when the frequency becomes high, the differ-
ence is significant.

5.2. The interacting cracks

In this sub-section, we present the results of the two-crack solution. It is assumed that a1 ¼ �a, b1 ¼ a,
a2 ¼ 2a and b2 ¼ 4a. The resulting SIF and EDIF at the inner tip of crack one are shown in Figs. 10–12.
The corresponding single crack solution is also depicted in these figures for comparison. It is seen from

Fig. 4. Normalized SIF versus k0h for various a=h assuming the permeable boundary condition.

Fig. 5. Normalized SIF versus k0h for various h1=h assuming the impermeable boundary condition.
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Fig. 6. Normalized SIF versus k0h for various Dh assuming the impermeable boundary condition.

Fig. 7. Normalized SIF versus k0h for various a=h assuming the impermeable boundary condition.

Fig. 8. Normalized EDIF versus k0h for various a=h assuming the impermeable boundary condition.
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Fig. 9. Comparison between solutions of the permeable and impermeable boundary conditions assuming a=h ¼ 0:6, h1 ¼ 10h and

Dh ¼ 1.

Fig. 10. Normalized SIF versus k0h assuming the permeable boundary condition with a=h ¼ 0:6, h1 ¼ 10h and Dh ¼ 1.

Fig. 11. Normalized SIF versus k0h assuming the impermeable boundary condition with a=h ¼ 0:6, h1 ¼ 10h and Dh ¼ 1.
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Figs. 10 and 11 that due to the interaction of cracks, the dynamic stress intensity factor may increase or
decrease in some ranges of frequencies, depending on the value of k0h. Similar phenomenon can be observed
for the electric displacement intensity factor in Fig. 12.

6. Conclusions

The dynamic behaviour of a piezoelectric laminate containing multiple interfacial cracks subjected to
steady-state electro-mechanical loads is investigated. The analysis is based on the use of integral transform
techniques and integral equation methods. Numerical calculations are carried out to study the effect of the
geometry of the interacting cracks, the applied electric fields, the electric boundary conditions along crack
faces and the loading frequency on the resulting dynamic stress intensity factor and electric displacement
intensity factor. The study reveals that:

1. Small cracks are more likely to propagate and cause damage to the structure than large cracks when elec-
tro-mechanical loads are applied in some specific ranges of frequencies.

2. The presence of either a positive or a negative electric field results in an increase or a decrease of the dy-
namic stress intensity factor, depending on the frequencies of the applied electro-mechanical loads. This
indicates that both a positive electric field and a negative electric field can retard or promote the prop-
agation of a crack.

3. For both the permeable and impermeable boundary conditions, the phenomenon of an intense vibration
is observed.

4. When the impermeable boundary condition is considered, a strong local electric field may be induced at
the crack tip in some specific ranges of frequencies.

5. For lower frequencies of the applied electro-mechanical loads, both the permeable boundary condition
and the impermeable boundary condition give comparable results of local stress fields. When the fre-
quency is high, the difference between the two cases becomes significant and they should be treated sep-
arately.

6. Compared with the single crack problem, both the dynamic stress intensity factor and the electric dis-
placement intensity factor may increase or decrease in some ranges of frequencies due to the interaction
of cracks.

Fig. 12. Normalized EDIF versus k0h assuming the impermeable boundary condition with a=h ¼ 0:6, h1 ¼ 10h and Dh ¼ 1.
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