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Abstract

This paper investigates the dynamic behaviour of a piezoelectric laminate containing multiple interfacial collinear
cracks subjected to steady-state electro-mechanical loads. Both the permeable and impermeable boundary conditions
are examined and discussed. Based on the use of integral transform techniques, the problem is reduced to a set of
singular integral equations, which can be solved using Chebyshev polynomial expansions. Numerical results are pro-
vided to show the effect of the geometry of interacting collinear cracks, the applied electric fields, the electric boundary
conditions along the crack faces and the loading frequency on the resulting dynamic stress intensity and electric dis-
placement intensity factors. © 2002 Published by Elsevier Science Ltd.
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1. Introduction

With the increasing usage of piezoelectric materials and composites as actuating and sensing devices in
smart structures, where dynamic loading is dominant, much attention has been paid to their dynamic
fracture behaviour. Shindo and Ozawa (1990) first investigated the steady state dynamic response of
cracked piezoelectric materials under the action of incident plane harmonic waves. The dynamic Green’s
functions for anisotropic piezoelectric materials were derived by Norris (1994). Khutoryyansky and Sosa
(1995) proposed dynamic representation formulas and fundamental solutions for piezoelectricity. Li and
Mataga (1996a, 1996b) studied the problem of a semi-infinite crack propagating in an infinite piezoelectric
medium. They investigated the effect of the propagating velocity of the crack on the crack tip fields. Narita
and Shindo (1999) investigated the scattering of anti-plane shear waves by a finite crack in piezoelectric
laminates. By the use of integral transforms and Copson-Sih’s method, Chen and Karihaloo (1999) in-
vestigated the transient response of a finite crack in an infinite piezoelectric medium under the action of
anti-plane mechanical loads and in-plane electric displacements. Meguid and Chen (2001), Wang and Yu
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(2000), and Shin et al. (2001) considered the dynamic crack problem in a piezoelectric strip under electro-
mechanical impact. Meguid and Wang (1998) and Wang and Meguid (2000) studied the dynamic anti-plane
interaction of cracks in a piezoelectric medium under incident shear wave loading.

Most piezoelectric devices in smart structures are surface-mounted, and debonding may take place along
the interfaces between those devices and the host structures. It is, therefore, of great importance to in-
vestigate the effect of debonding on the coupled electro-mechanical behaviour of an integrated structure. Li
et al. (2000) considered a moving crack at the interface between two dissimilar piezoelectric materials.
Based on the use of the impermeable crack condition, Wang et al. (2000) analyzed a cracked piezoelectric
laminate subjected to electro-mechanical impact loads. With a pseudo-incident wave method, Wang (2001)
discussed the scattering of multiple interfacial cracks between two infinite piezoelectric mediums. In his
study, the cracks were assumed to be permeable.

In this paper, we consider the dynamic behaviour of a piezoelectric laminate containing multiple in-
terfacial collinear cracks subjected to steady-state electro-mechanical loads. Both the permeable and im-
permeable boundary conditions are considered and discussed. Based on the use of integral transform
techniques, the problem is reduced to a set of singular integral equations, which can be solved using
Chebyshev polynomial expansions. Numerical results are provided to show the effect of the geometry of
interacting cracks, the applied electric fields, the electric boundary conditions along the crack faces and the
loading frequency on the resulting dynamic stress intensity factor and electric displacement intensity factor.

2. Formulation of the problem

Consider the problem of a piezoelectric laminate containing » interfacial collinear cracks, as shown in
Fig. 1. A set of Cartesian coordinates (x, y, z) is chosen such that the x-axis is directed along the crack line
and y-axis is perpendicular to it. The poled piezoelectric strip, with the z-axis being the poling direction,
occupies the region (—4 < y < 0, —oo < x < 400). It is assumed that the laminate is subjected to a uniform
shear stress toexp(—iwt) at y = —h, by and —oo < x < +oo. Furthermore, a uniform in-plane electric
displacement D, exp(—iwt) is prescribed on the lower surface of the piezoelectric strip, resulting in a steady
and coupled electric and stress wave field.

For the sake of convenience, the exponential harmonic factor exp(—iwt) will be suppressed and only the
amplitude of different field variables will be considered. In this configuration, the piezoelectric boundary
value problem is simplified considerably because only the out-of-plane displacement and the in-plane
electric fields exist. The constitutive relation for the piezoelectric material can be expressed as

Teexp(iowt)
(o) (o) (o) (0) (o) (o) (o) (o) (o)

Elastic material F y

a, b, A B, a, b

Piezoelectric material

W@?WWW

Teexp(iwt) Dyexp(iwt)

Fig. 1. Geometric configuration of the problem.
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ow 0 ow 0
sz:C44a+€1sa—(f7 T}z:C44a+elsa—i (1)
and
ow 0 ow 0
szelsa—’ma—f, Dy:€1sa—y—’€116—f (2)

where 7,, and 7, are the shear stress components, D, and D, are the electric displacements, w and ¢ are the
mechanical displacement and electric potential, while c44, €5 and x;; are the elastic modulus, the piezo-
electric constant and the dielectric constant of the piezoelectric material, respectively.

The equilibrium equation and the Maxwell equation for the piezoelectric material under anti-plane
loading are given by

01y, 01y

R 2 —
™ + 3 +pow=0 (3)
oD, oD,

= _ 4
ox + oy 0 “)

where p is the density of the piezoelectric material.
Substituting Egs. (1) and (2) into (3) and (4) results in the following governing equations:

Viw + kéw =0, xuV’¢=e;sVw (5)

where ky = w/ca, with ¢ = \/u/p and p = cyy + € /x11.
The constitutive relation for the elastic material can be written as

an an
Tzl = C44la7 Tyz1 = Ca41 5 (6)

where 1,,; and 1, are the shear stress components, w; and cs are the displacement and the elastic
modulus, respectively. The governing equation is given by

V2w1 + k%W] =0 (7)

in which ky = ®/cy1, with ¢ = \/caa1/p; and p, is the density of the elastic material.

In the framework of linear theory, the present problem can be treated as the superposition of two sub-
problems. Sub-problem (a) considers a crack-free piezoelectric laminate under the action of electro-
mechanical loads on both surfaces. While sub-problem (b) concerns a piezoelectric laminate of multiple
interfacial cracks, with the crack faces subjected to the electro-mechanical loads that cancel out the stress
and the electric displacement induced by sub-problem (a).

Sub-problem (a) can be easily solved and therefore the detailed calculation is omitted. The stress and the
electric displacement along the interface are found to be

N ’C()[,uk() Sil’l(k()h) + C441k1 Sin(lﬁhl)} + 6156‘441](1D0 sin(klhl)[l — COS(koh)]/k]]

T}Z(x7 0) o ,Ll,k() COS(klhl) Sin(koh) + C441k1 sin(klhl) COS(k()h) (8)

5},(x, 0) = D() (9)

Next, we discuss sub-problem (b) in detail. With the help of Fourier transforms, the solution of the
governing equations (5) and (7) is given by

W) = = [ @ exp(— 1)+ 4:(E) expla)] expl(—ic) de (10)
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$(x,) = ,i—lljw@,y) +P(x,)

W) =5 [ U@ expl — ) + 44(E) exp(fe)] exp(—ic) de
1 * .
wil) = 5o [ AS(E) exp( ~ 1) + 4@ exp(r)] exp(—icr) de

where

&-k e =k E-k g =k
Y= . 5 ) "= . B
Wk =& ¢ <k ki =& [f<h
From (1), (2) and (6), the stresses and electric displacements are obtained as follows:

telx,) / EAL(E) exp( — 79) + A4a(E) exp(yy)] exp(—icx) dé

elsl/ <45 (&) exp( = [¢]y) + 4a(&) exp(|¢]y)] exp(—ix) A&

elrn) =4 [l = @ expl(— 1)+ AE) exp) exp(-in) 42

+% |5|[ A3 (&) exp( — [€]y) + A4(E) exp(|€]y)] exp(—iéx) d&

Dy(x,y) =51 / E14s() exp( — [E1y) + As(&) exp(|E]y)] exp(—icx) dé

Dy(x,y) = —% Ifl[ A3(&) exp( — [E]y) + 4a(&) exp([¢]y)] exp(—icx) d&

T (x,) = c““” / E[As(&) exp( — p1p) + 46(E) exp(yy)] exp(—iéx) dé

G (00) = [ = As(€) exp(— 719) + Ae(&) exply)] expl—icv) de

(20)

In the above expressions, 4;(¢) (j = 1-6) are unknown functions, which will be determined from

boundary conditions.

In the theoretical studies of crack problems, the modelling of the electric boundary conditions along the
crack faces is still an open problem. Generally, there are two well-accepted electric boundary conditions;
namely: the permeable and impermeable boundary conditions. From the physical viewpoint, those two
electric boundary conditions are the two extreme cases, with the permeable boundary condition repre-
senting the case where the crack faces are in complete contact and the impermeable boundary condition
representing the case where the crack is open and filled with vacuum. For the present case, those two
electric boundary conditions are examined and the corresponding discussions are presented in Sections 3

and 4, respectively.
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3. Solution of the permeable crack problem

In this section, we consider the permeable crack problem. It is assumed that the surface of the elas-
tic material is grounded, so that the boundary conditions for the permeable crack problem can be written
as

T (X, 1) =0, —o0<x <00 (21a)

Tyt (x,0) = 7,.(x,0), —o0 <x< 00 (21b)

$(x,0) =0, —oco<x<o0 (21c)

71 (x,0) = —7,.(x,0), x € (ap,b,), p=12,....n (21d)

w(x,0) = wi(x,0), x ¢ (ap,b,) (21e)

T(x,—h) =0, —oco<x<o0 (21f)

D,(x,—h) =0, —oo<x< o0 (21g)

Substituting (10)—(13), (16), (18) and (20) into (21a)-(21¢) and (21f) and (21g), we find

45(&) = exp(2h) 4, (£) (22)
_ e[l +exp(2yh)]

A= el >
. ers[1 + exp(2yh)]

Au(8) = = s exp(2lElh) () (24)

As(&) = exp(2y,h1)46(<) (25)

A6(8) = pylexp(2yh) — 1][1 + exp(2[E|A)] + efs/rn |€][1 + exp(2yh)][1 — exp(2\élh)]Al(é) (26)

cayi[1 + exp(2[[A)][1 — exp(2y, /)]
Denote that

Aw(x) = wi(x,0) — w(x,0) (27)
then, we have
_J0 x & (aibe),
Aw(x) = {Awk(x) e (a;bi)’ k=1,2,....n (28)

To reduce the mixed boundary conditions (21d) and (21e) into an integral equation, we now introduce
the following dislocation function

_d(Aw) 0 x¢&(ar,by)
ww@r{m@)XGWﬁm (29)

where ¢, (x) = d(Aw;)/dx. Then, from (21¢) we have

hp
/ ¢,(x)dx=0, p=12,....n (30)

'p
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Substitution of (10) and (13) into (29) yields

0(0) = — o [ HEAS(E) + AoE) ~ Ai(E) — Ax(E)] expl-ic) e 61)
From the above eqllz:otion and the definition of Fourier transform, we obtain
RCERICEVICEVECEERS o AL (32)
Further, from (22)-(26) and (32), we have
(¢) =~ L OPCERIE = 0L 5 7 g, 1) expiza s 33)
where

2
Fi(¢) = %51 [SI[1 + exp(2yh)][1 — exp(2[E|A)][1 + exp(2y,1)] + [1 4 exp(2|¢[A)]
< {1+ exp(2y,1)][exp(2yh) — 1] = caary [1 — exp(2y,m)][1 + exp(2yh)]} (34)
By using Eq. (21d), it is shown that

* p(E) expl—icy) ¢ [ e 2
/ > [ outexplen dnds = r,0)

o0 1EF (€) a
x € (apb,), p=12,....n (35)
where
F(8) = [1 —exp(2yhn)][{my[1 + exp(2[&|h)][exp(2yh) — 1] + efs/xn|E][1 — exp(2[E[A)][L + exp(2yh)] }
(36)

After performing the appropriate asymptotic analysis, the following result can be obtained:
lim 12(E) ___ Cu
lélo0 EFY (&) Casa + Cag1

By making use of Eq. (37) and defining that

o bk — dy bk + ay

sign(¢) (37)

e R = e+ di (38)
b, — b
x= pzapLH— szrap:epu—de (39)

Eq. (35) becomes

1 n 1
»,\n T(C44 + C _
/1 n"fgdiﬁz /lka(r/,u)sok(n)dn——M%(u,o), lul <1, p=1,2,....n  (40)
_ |

C44C441

where

+1

_ e B Opk _ > [(044 + caa)1F2(E)
ka('/lvu) - el — el + (dk — dp) n—u /0 C C44fFl(é)

x sin [&(exn + dy) — E(epu + d,) | dE (41)
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Eq. (30) can be written as

1
/ @,(Mdn =0, p=12,...,n (42)
-1

Eq. (40) is a singular integral equation of the first kind, its solution includes the well-known square-root
singularity and can be expressed as

o) =Y 2 _n) )

where T;(n) are Chebyshev polynomials of the first kind and B,; are unknown constants. From the or-
thogonality conditions of Chebyshev polynomials, Eq. (42) leads to By, = 0. Substituting Eq. (43) into (40),
the following algebraic equation for By, is obtained:

= =  Cag +Cann _
B,;U )+ ByiL =——7.(4,0 ul <1 p=12,....n 44
; P kz; jz: i Loy (u CaaCant 7,:(u,0),  |uf p (44)
where U;(u) represent Chebyshev polynomials of the second kind, and
AU
Lyi(u) = — ,u)d
pkj( ) » nﬂka(’? ) n

Truncating the Chebyshev polynomials in Eq. (44) to the Nth term and assuming that Eq. (44) is satisfied
at N collocation points along the crack faces,

(45)

um:cos<Nmfl>, m=12...,N (46)

Eq. (44) can be reduced to a linear algebraic system of equations of the following form:

N )
i il i _ Caa + Caar _
B,isin | —— sin B..L __Cutcm 0
’Z:l: ! <N+ 1)/ <N+ 1) +k21: 121: oLty ) C44C441 Bz (4 0),

m=1,2,...,N and p=1,2,....n (47)

Once By; are determined from (47), the stress components can be obtained. Then, the dynamic stress
intensity factors of crack p can be evaluated using the following expressions:

cuca m(by, — a,) &
B AU e i
il xf? \/Tp)f} (x,0) Cas + Can 2 12:1: N v
C44Ca41
Kt = lim/2n x,0) \/—‘ ’
m = e ﬁ (  Cas + ca Z v

P

4. Solution of the impermeable crack problem

Consider now the impermeable crack problem. The boundary conditions for the problem can be ex-
pressed as

T (X, 1) =0, —o0 <x <00 (50a)
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T (x,0) = 1,.(x,0), —o0 <x <00 (50b)
1.(x,0) = —7,.(x,0), x € (a,b,) (50¢c)
W(xa O) =w (xa O)a X ¢ (apa bp) (SOd)
Dy(x7 O) = _D07 X € (apvbp) (506)
¢(x7 0) =0, x¢ (apabp) (SOf)
T,.(x,—h) =0, —oo <x< 00 (50g)
Dy(x,—h) =0, —oco<x<o0 (50h)
From (50a), (50b), (50g) and (50h), it can be seen that

A>(&) = 4,(8) exp(2yh) (51)
A4(8) = 45(8) exp(2[¢[h) (52)

_ uylexp(2yh) — 1] exp(2y,h1) eis|<|[exp(2[¢[h) — 1] exp(2y, /1)
45(¢) = canyi[l — exp(2y,h1)] 4+ canyi[1 — exp(2y,h1)] 45(6) 33)

py[exp(2yh) — 1] eis|¢|[exp(2[¢[h) — 1]

= 4

46(¢) can[1 — eXp(zylhl)]Al - canyy[1 — exp(2y,h1)] ) 59
Let us again introduce the following dislocation function:
d
¢1(x) = 3 w1 (x,0) = wix, 0)] (55)
and the following definition:
do(x,0

ool = — 20 (56)

According to Egs. (50d) and (50f), those two functions can be written as

o 0 X ¢ ((lk,bk)
1) = {(plk(x) x € (ax, by) 57)

%@z{o x & (a by) (8)

@) x € (ax, br)
where ¢, (x) = d(Awy)/dx, @, (x) = —d¢,(x)/dx, and they must satisfy

by
/(plp(x)dx:(), p=12....n (59)

'p

bp
/ P(x)dx =0, p=1,2,....n (60)

p
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By using Egs. (55), (56), (10)-(13), and the definition of Fourier transform, we obtain

1+ exp(2y)Ae(¢) — [1 + exp(2lan(&) =~ 3 / " orel) explicr) do
214 exp(2ph)}as (&) + [1 + exp(2/¢]h))4 52 / @2¢(2) exp(ica) do

Substitution of (51)—(54) into (61) and (62) yields

1 2|1 — 29,k - b .
1 el LSS P, i
_ aislél[exp(2[¢]h) — 1[1 +exp(2phn)] <~ [
léFi( ) - /ak (ka exp(lfoz)
_caneisy [l +exp(ph)][1 —exp(2y,m)] §~ [
AS(é) - iKlléFl(é) — /ak (Plk exp(léa)

1
1£F1( )

n

bk
<> [ outo) explico
ay

k=1
From (50c) and (50e), we have

€is

/: ylexp(2yh) — 114, (&) exp(—iéx)d¢ = _27713 [Tyz(x, 0)+-— T DO}, x € (ap, b,)

OO . 2
[ lellexp(2leth) ~ (@) exp(-ig0de = " Dn, ¥ € (anty)

By substituting Eqgs. (63) and (64) into (65) and (66), we obtain

00 n by 00
% [ xa“(é)exp(—iéx); / golk(oc)exp(iéoc)dfxdéJr% [ xalz(f)exp(—iéx)

1 b . 2 €1s
X Z /a, @y (o) exp(ila) dadé = n {ryz(x 0) —i—k DO], x € (a,, b,)

k=1 11

00 n by 00
%/xan(é)exp(—iéx);/ak (plk(oc)exp(iéoc)}docdiJr%[mazz(é)exp(—iéx)

n

b/[ 2
«3 / 02(3) xp(ia) dudé = 75 D1, ¥ € (as )
k=1 ag

_ caanyn[1 + exp(2[¢[A)][exp(2yh) — 1][1 — exp(2y,/)]
Er(9)

{uy[exp(2yh) — 1][1 + exp(2y,h1)] — canyy [l + exp(2yh)][1 — exp(2y,/1)]}

2485

(61)

(62)
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an(&) = ers|€[y[exp(2]E[h) — 1][exp(2yh) — 1][1 + exp(2y, k)]

70
& (D 70
o erscaat| €y [exp(2|E|h) — 1][exp(2ph) 4 1][1 — exp(2y,/41)]
() = 0 & (0 7
21E1h) — 1
(&) = FSEEE = s exp(2rm) — 111+ exp()] - conn[1 -+ expyh)[1 — exp(rh)])
(72)
Performing appropriate asymptotic analysis leads to
. _ G .
|€l|1£20a11(§) N Ca44 + Ca41 Slgn(é) (73)
. - €1s .
Igllir;oan(é) Cas F caa sign(c) (74)
. _ €15C441 .
Iélllirioazl(é) N K11(6’44 + C441) mgn(f) (75)
lim ax (&) = {1 —i—ei%s} sign(¢&) (76)
oo )T K11(Cas + Can) £

By the use of (38) and (39), and from (67) and (68) and (73)—(76), we have the following singular integral
equations:

. 1 n 1 n 1
/ M dy — o / M dn+ Z /1 Ouipk (11, 1)y (1) dny — Z /1 Ouopi (1, 1)y (17) iy
_ - k=1 - k=1 B

1 N—u Ca41 1 n—u

+
ment e [e w0+ 8], i< 77)
HCaa1 11

) 1 n 1
. / q)lp(n) d;7 4 kll ('u + 0441) / (pr(’/’) d]’, —+ Z / Qlek (na u)(plk(n) d]’]
~ - k=1 /-1

1 n—u €15C44] 1 h—u
- ! T(Cas + Caa1)
+ U dp=———2Dy, |ul<1 78
; [ Qape(n, ) (n) dy = ==2 Do, Ju (78)
where
€k O | eaq + caan
= - ok Cu T Gl 1
Ok (11, 1) el —eut (di—d) n-u /0 61{ o an (&) + ]
x sin [E(exn + di) — E(epu + d,)| dE (79)
ers e Ok } /OO {044 + caa1 ers ]
) = — — + e | ———ap (&) ——
Quopi (1) cam e —eu+ (de—d,) n—u 0 g Casl 2(e) Ca41

x sin [E(exn + di) — E(epu + d,)| dE (80)
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e Opi /oo {ku (Cas + caar)
s = — —|— —_— + 1
Qa1 (1, ) e —eu+(di—d,) n—u 0 ek €15C441 ax ()
x sin [E(exn + di) — E(epu + d,)| dE (81)
ki (i + can) { € Opk }
szpk(n’ u) = €15C441 el — epu + (de — dp) n—u

*© k + k + .
+ / e {“(0446’441)6122(5) _ “('“0441)] sin [E(exn + di) — Eeu + )] dé (82)
0 €15C44] €15C441

We also have

1 1
/qolp(n)dn=0, /lwzp(n)dn=0, p=12,....n (83)
-1 _

In a similar fashion to Section 3, the functions ¢,,(1) and ¢, (1) are defined in terms of the Chebyshev
polynomials:

o) = i ﬁ_—’jﬁm, o) = i %m (84)

From (83), it follows that By = E;y = 0. By truncating the series to a reasonable number of terms and by
using a simple collocation technique, we can determine the remaining unknowns using the following
algebraic equations:

~N_ | sin (:,’fl) es | sin (}:,”—’"> N N
) By = S | T eSS LBy — S L )y
=1 | sin (A’/’fl) €441 77 | sin (&"—L) =1 =1 =1 =1
__Cu + Caa1 {‘c (U, 0) + elsDO} (85)
[iCan yz\%m> %
N_ | sin ( mJn ) k N_ | sin ( ) n_ N
-y L By Ch Z LB+ > Loipi(un)By;
() [ e ) |
N+1 J= N+l J
+ZZL22pk, un)Eq = ‘”:‘Jrﬂ[)o, p=12. . nand m=12,.. . N (86)
=1 = 15C441
where
1
T(n)dn, r.s=12 (87)

Lny i\u = Qr 7’Ia”:
pk]( m) 1 7'[\/— spk m

Based on the solutions of (85) and (86), the dynamic stress intensity factors and electric displacement
intensity factors of crack p can be obtained, as follows:

U (b, — a,) - es g
KR = 1li 2n(x — b 0) = PP B, — 88
11 XLI? \/27(x = b,)7,(x, 0) Cas + Cant 2 < cul ]_Z] Teis Z ) (88)
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KR = limy/2n(x — b,)D,(x,0)
x—by
1 TC(bp - ap) 00
C44 + Caa1 \/_2“ €15C441 ; k(1 + caan Z:
Ky = lim \/mrﬂ(x, 0)
h—?ap
u
- —1)'By; - —1YE,
Caq + Caal \/—_—_— [0441 Z By — eis Z o

K} = hm \/2n(a, — x)D,(x,0)

yZ

1 s b S 0
" Cas + Can : l€15644 g By — ki (1 + cann Z

J=1

5 kL (90)
K11

5. Numerical results and discussions

Numerical calculations have been carried out to show the influence of the pertinent parameters. In the
following examples, the piezoelectric material is assumed to be PZT-4, and the elastic material is assumed to
be aluminium. The elastic, piezoelectric and dielectric properties of the materials are as follows (Narita and
Shindo, 1999):

Cqq = 2.56 x 1010 N/mz, €15 = 12.7 C/mz, K11 = 64.6 x 10_10 C/Vm, p = 7500 kg/m3,
can = 2.65 x 10°° N/m?,  p, = 2706 kg/m’.

To check the convergence of the expansions in (43) and (84), a number of runs with varying number of
terms were used. We found that good convergence (2% difference between two successive runs) can be
reached when the number exceeds 15 terms. In all our calculations, we used twenty terms.

5.1. The single crack solution

Let us now restrict our attention to the single crack solution. It is assumed that ¢y = —a and b, = a.
Numerical results are shown in Figs. 2-11. In these figures, normalized parameters are used with
SIF = KIH/(T()\/%), EDIF = KD/(D()\/E), and Dh = 615D0/(K11‘L'()).

Figs. 2-4 show the results of the permeable crack problem. Specifically, Fig. 2 displays the variation of
the SIF with ko/ for various h;/h at a/h = 0.6 and Dh = 0. In the case of #; = A, it is seen that for lower
frequencies, the dynamic SIF increases gradually with increasing kyks. When the frequency k¢h approaches
1.2, an intense vibration takes place, which is reflected in the fact that the SIF changes sharply. This
phenomenon can also be observed for #; = 5k and h; = 10A.

Fig. 3 shows the influence of the applied electric fields on the dynamic stress intensity factor. It is seen
that when the frequency of the applied electro-mechanical loads is low (ko# < 1.2), the effect of electric fields
is negligible. However, when the frequency increases, the effect becomes obvious. It is also seen that both
the positive electric field (Dh = 1.0) and the negative electric field (Dh = —1.0) can induce the increase or
decrease of the dynamic stress intensity factor, depending on the value of k.
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Fig. 2. Normalized SIF versus koh for various /;/h assuming the permeable boundary condition.
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Fig. 3. Normalized SIF versus ko for various Dh assuming the permeable boundary condition.

The effects of crack geometry on the dynamic stress intensity factor are shown in Fig. 4. As can be seen
from the figure, the SIFs for the three cracks have almost the same value for lower frequencies. With the
increase in frequency, a significant difference is observed. In some specific ranges of frequencies, the SIF for
a/h =0.2 is much bigger than that for a/h = 0.6 and 1.0. For example, when ko = 1.7, the SIFs for
a/h=0.2, 0.6 and 1.0 are 32.67, 5.13 and 1.63, respectively. The related Ky;/(to\/7) are 14.60, 3.98 and
1.63, respectively. The inference of this is that small cracks are more likely to propagate and cause damage
to the structure than larger cracks in those ranges of frequencies.

The results of the impermeable crack problem are presented in Figs. 5,6 and 8. Generally, similar ob-
servations can be deduced from Figs. 5-7. However, the frequency of an intense vibration increases, as is
depicted in Figs. 5 and 6. In addition, the effect of the applied electric field on the dynamic SIF is more
pronounced. The effect of crack geometry on the dynamic SIF can be deduced from Fig. 7.

The variation of the electric displacement intensity factor with ko/ for various a/h at h; = 10h and
Dh = 1.0 is depicted in Fig. 8. From this figure, significant overshoot is observed in some specific ranges of
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Fig. 5. Normalized SIF versus koh for various /;/h assuming the impermeable boundary condition.

frequencies. This indicates that a strong local electric field is induced at the crack tip, which may further
lead to failure of the piezoelectric material.
Fig. 9 compares the solutions for the permeable and impermeable conditions. For lower frequencies, the

difference between the two solutions is negligible. However, when the frequency becomes high, the differ-
ence is significant.

5.2. The interacting cracks

In this sub-section, we present the results of the two-crack solution. It is assumed that a; = —a, b; = «q,
ay = 2a and b, = 4a. The resulting SIF and EDIF at the inner tip of crack one are shown in Figs. 10-12.
The corresponding single crack solution is also depicted in these figures for comparison. It is seen from
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Fig. 10. Normalized SIF versus koh assuming the permeable boundary condition with a/h = 0.6, h; = 10h and Dh = 1.
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Fig. 12. Normalized EDIF versus kyk assuming the impermeable boundary condition with a/h = 0.6, h; = 10k and Dh = 1.

Figs. 10 and 11 that due to the interaction of cracks, the dynamic stress intensity factor may increase or
decrease in some ranges of frequencies, depending on the value of kyh. Similar phenomenon can be observed
for the electric displacement intensity factor in Fig. 12.

6.

Conclusions

The dynamic behaviour of a piezoelectric laminate containing multiple interfacial cracks subjected to

steady-state electro-mechanical loads is investigated. The analysis is based on the use of integral transform
techniques and integral equation methods. Numerical calculations are carried out to study the effect of the
geometry of the interacting cracks, the applied electric fields, the electric boundary conditions along crack
faces and the loading frequency on the resulting dynamic stress intensity factor and electric displacement
intensity factor. The study reveals that:

L.

2.

Small cracks are more likely to propagate and cause damage to the structure than large cracks when elec-
tro-mechanical loads are applied in some specific ranges of frequencies.

The presence of either a positive or a negative electric field results in an increase or a decrease of the dy-
namic stress intensity factor, depending on the frequencies of the applied electro-mechanical loads. This
indicates that both a positive electric field and a negative electric field can retard or promote the prop-
agation of a crack.

. For both the permeable and impermeable boundary conditions, the phenomenon of an intense vibration

1s observed.

. When the impermeable boundary condition is considered, a strong local electric field may be induced at

the crack tip in some specific ranges of frequencies.

. For lower frequencies of the applied electro-mechanical loads, both the permeable boundary condition

and the impermeable boundary condition give comparable results of local stress fields. When the fre-
quency is high, the difference between the two cases becomes significant and they should be treated sep-
arately.

. Compared with the single crack problem, both the dynamic stress intensity factor and the electric dis-

placement intensity factor may increase or decrease in some ranges of frequencies due to the interaction
of cracks.
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